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Abstract
We have carried out numerical simulations of the convection zone in a K dwarf of 0.7 solar masses rotating at the solar rotation

period. We study the convection pattern, the di�erential rotation and meridional �ows, and the dynamo-generated magnetic

�eld. We �nd that for a star of this type, the solar rotation period represents a case of fairly rapid rotation and the di�erential

is solar-type. A dynamo-generated large scale �eld appears but it is neither dipolar nor does it show a simple activity cycle.

1 Introduction
Magnetic activity is a common phenomenon for cool stars.

A common property of these stars is an outer convection

zone that covers a signi�cant fraction of the stellar radius.

While these convection zones contribute little to the total

stellar mass, they comprise a large fraction of the stellar vol-

ume. To this day, there is no generally accepted theory for

the generation of stellar magnetic �elds. Convection, how-

ever, is usually a vital ingredient in current models. As the

star rotates, the convective gas motions are a�ected by the

Coriolis force, which causes them to be helical. It also causes

a transport of angular momentum through Reynolds stress,

which in turn causes di�erential rotation. The latter is a pow-

erful generator of toroidal (azimuthal) magnetic �elds, pro-

vided a poloidal �eld is already present. Helicity, on the other

hand, can produce poloidal as well as toroidal �elds. The best

known dynamo model is the αΩ dynamo, a combination of

di�erential rotation and helicity.

While mean �eld models have historically had some suc-

cess explaining the existence of stellar magnetic �elds, they

can not reproduce all the properties of stellar and particu-

larly solar activity. Progress in computer technology over

the last decades has made direct numerical simulations fea-

sible. Starting from early work in two dimensions (Gilman

& Glatzmaier, 1981; Glatzmaier & Gilman, 1981), a large va-

riety of models have been developed in three-dimensional

spherical geometry, covering either full spherical shells of

wedge geometry. We here use the anelastic approach in full

spherical shell geometry, which was �rst used by Glatzmaier

(1984). Extensive use has been made of it since in the context

of rotating stellar convection and magnetoconvection, par-

ticularly with the ASH and Magic codes (Miesch et al., 2000;

Brun et al., 2004; Christensen et al., 2001).

2 Numerical simulations
We use the Rayleigh MHD code (Featherstone & Hindman,

2016) in anelastic mode to simulate the gas �ow, heat �ux,

and magnetic �eld in a spherical shell. The anelastic approx-

imation allows larger time steps than a fully compressible

code and is valid for small Mach numbers.

To run the code for a particular stellar model, a background

model is required to implement the strati�cation in the stel-

lar convection zone. We use the Mesa stellar evolution code

(Paxton et al., 2011, 2013, 2015, 2018, 2019) to produce a model

for a main sequence star of 0.7 solar masses and solar metal-

licity and an age of 5 Gyr. With an e�ective temperature of

4368 K and a radius of 0.67R�, the star has a luminosity of

0.15L�. The bottom of the convection zone is at a radius of

0.45R�.

To incorporate the stellar model into the Rayleigh MHD

code, we approximate it with a simple polytropic model by

solving a Lane-Emden-type system of ordinary di�erential

equations for mass density, temperature, and gravity with

the values from the Mesa code at the inner boundary as ini-

tial conditions. Our model di�ers from that built into the

Rayleigh code as it does not assume a 1/r2 gravity law but

takes the mass of the convection zone into account. The dif-

ference between this approach and and the one polytropic

model from Jones et al. (2011), that is implemented by de-

fault in the Rayleigh code, is negligible for shallow convec-

tion zones but becomes noticeable for deep convection zones.

Our approach provides a valid approximation as long as the

luminosity is constant throughout the convection zone and

thus allows the treatment of K giants as well as low mass

main sequence stars.

Figure 1 shows the gravity force, temperature, and mass

density in the convection zone of the star from the Mesa

code versus the same quantities from the polytropic model

for our 0.7M� K dwarf and a 1.0M� K giant. The di�erence

between the Mesa and polytropic models is less than the line

width for all three quantities in both cases. This shows that

the polytropic model is indeed an excellent representation of

the Mesa models for giants as well as main sequence stars.

The steep strat�cation at the top of the convection zone

prevents the inclusion of that layer in the simulations as the

Mach number is no longer small, as required for the anelastic

approximation to be valid. Moreover, the small scale height

in that layer would require a prohibitively high numerical

resolution. The upper boundary of our model is therefore

located at a fractional radius of 0.94. This limits the range of

mass densities to three scale heights. Convection is driven

by a volume heating term in the lower part of the shell. We

start with a small perturbation which triggers the convective

instability. The system eventually settles in a state where

the heat �ux through the shell is constant and predominantly
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Figure 1: Strati�cation in the outer convection zone of the 0.7M� K dwarf (left) and a 1.0M� K giant. The solid red lines shows

the output from the Mesa code, the dash-dotted blue lines our polytropic approximation.
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convective. The simulations include a magnetic �eld, which

also starts as a small perturbation. Like the velocity �eld, the

magnetic �eld grows exponentially until it saturates.

Figure 2 shows a snapshot of the radial velocity and mag-

netic �eld components at the upper boundary for a K dwarf

rotating with the solar rotation period. This corresponds to a

value of 10.8 for the Coriolis number and therefore represents

a case of fairly, but not extremely rapid rotation. Correspond-

ingly, the convection pattern at low latitudes shows columns

that are aligned with the rotation axis rather than a Bénard

cell pattern found for slow rotation. At high latitudes, the cell

structure is more plume-like. With �eld strength in the kG

range, the surface magnetic �eld is quite strong and clearly

shows some large-scale pattern but no simple dipole geom-

etry. Likewise, an axisymmetric component is present but

weaker than the non-axisymmetric part. It is shown in Fig-

ure 3, which has been generated by averaging over longitude

and a time span that is short relative to the total simulation

time. With �eld strengths below 100 G, it is weaker than the

�uctuating part.

Figure 4 shows the corresponding rotation and meridional

�ow patterns, which result from the same averaging proce-

dure. The di�erential rotation is solar-type, i.e. the equator

rotates more rapidly than the polar caps. This is in line with

the �ndings of Brun et al. (2022), who studied a similar model,

though in a slightly di�erent parameter regime, and the gen-

eral �nding of anti-solar rotation for slow but solar-type

di�erential rotation for rapid rotation (Gastine et al., 2014;

Käpylä et al., 2014; Featherstone & Miesch, 2015; Mabuchi

et al., 2015; Viviani et al., 2018). A multi-cell meridional �ow

pattern is present at low latitudes, with amplitudes up to 10

m/s near the surface. As a large-scale �ow with a single cell

per hemisphere would require a signi�cant deviation of the

rotation pattern from cylindrical geometry, which we �nd for

slow rotation only.

Figure 5 shows the time-latitude diagrams of the az-

imuthally averaged magnetic �eld. The top panel shows the

radial �eld component at the top, the lower panel the az-

imuthal �eld at the bottom of the convection zone. At high

latitudes there is always one dominant polarity, with rever-

sals on a time scale of decades and no regular cycle. At

low latitudes up to 20 degrees there is belt of increased �eld

strength. The �eld polarity at any particular latitude changes

much more often than at high latitudes. Both the high and

low latitude regions show a distinct asymmetry with respect

to the equator, though no perfect anisymmetry.

3 Conclusions
Our polytropic model is a very good approximation of the

strati�cation from the Mesa code for cases in which the mass

of the convection zone can not be neglected. Our simulations

of a main sequence K dwarf show solar-type di�erential rota-

tion, a weak mean �eld, but a strong small-scale surface mag-

netic �eld. For the solar rotation period used here, no activity

cycle is found, though the magnetic �eld clearly varies with

time. As the star is considerably less luminous than the Sun,

the convective gas motions are slower nad the turnover times

longer. This results in a Coriolis number that is larger than

the solar value for the same rotation rate. We therefore �nd

solar type rotation, while similar models for the Sun usually

require higher rotation rates to reproduce the observed pat-

tern. The latter is a known problem, which may be solved by

Radial Velocity

7500

5000

2500

0

2500

5000

7500

Radial Field

104

103

102

0
102

103

104

Figure 2: Mollweide projection of surface radial velocity (top)

and magnetic �eld components (bottom) from a model with

Ω = 2.7 × 10−6s−1
.
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Figure 3: Left: Azimuthally averaged values of the azimuthal

magnetic �eld component. Center: Stream function for the

azimuthally averaged poloidal �eld components. Right: am-

plitude of the poloidal �eld.
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Figure 4: Left: Azimuthally averaged values of the angular

velocity. Middle: Stream function of the azimuthally aver-

aged meridional �ow components. Right: amplitude of the

meridional �ow.
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Figure 5: Time-latitude diagram of the magnetic �eld. Top:

the radial magnetic �eld near the stellar surface. Bottom: the

azimuthal �eld component near the bottom of the convection

zone.

extremely high numerical solution (Hotta & Kusano, 2021).
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